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The article presents a fast pseudo-spectral Navier–Stokes solver for cylindrical
geometries, which is shown to possess exponential rate of decay of the error. The
formulation overcomes the issues related to the axis singularity, by employing in the
radial direction a special set of collocation points together with standard Chebyshev
polynomials. A multi-domain technique with patching interfaces yields significant
improvements in the conditioning of the algebraic problems arising from the dis-
cretization procedure and allows for an enhanced near wall resolution of wall bounded
shear flows. The elliptic kernel enjoys the efficiency of an analytic expansion of the
harmonic extension. The method is tested by computing the formation of Taylor
vortices in a rotating Couette flow for both axisymmetric and non-axisymmetric
configurations. A direct numerical simulation of a turbulent pipe flow at moderate
Reynolds number demonstrates the effectiveness of the method in as much as the
axis singularity is concerned. Results compare well with reference experimental and
numerical data. c© 1999 Academic Press
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1. INTRODUCTION

Thanks to the recent growth in computer hardware, we have been witnesses of an impor-
tant shift from basic building block flows in simple geometries to more realistic configura-
tions. However, many fundamental issues in the study of transition and turbulence of even
very simple flows remain open and thus the interest for a comprehensive analysis tool is
becoming more and more important. The simulation of turbulent flows requires the accurate
resolution of all high frequency fluctuations associated to the small scales of turbulence.
The quickly growing ratio of the integral to the dissipative scale with Reynolds number
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dictates severe resolution requirements for the direct numerical simulation (DNS) of even
very low Reynolds number flows. As widely demonstrated by the open literature (see for
instance [1] and references therein), spectral methods provide the most confident platform
for a reliable turbulent data analysis, simply clearing out all possible doubts on the impact
of the numerical scheme on the physics of the flow under investigation. This feature is not
enjoyed by any other low order method. The higher computational cost of these methods
is widely compensated by their fast (exponential) rate of convergence, as well as by their
efficiency for long time integration problems.

Extensive developments are documented in the literature for Cartesian geometries, see
[2] for a review, while in cylindrical coordinates, even for flows with two homogeneous
directions, the available material is rather limited. The reason may be attributed to the addi-
tional difficulties which distinguish Cartesian flow problems from cylindrical ones, mainly
the variable coefficients in the differential operators and the singularity in the coordinate
system.

The first issue, which arises from the implicit treatment of the diffusive terms in the
Navier–Stokes equations, precludes in fact the straight application of the “full step method”
of Orszaget al. [3]. Leonard and Wray [4] introduced a new vector function in the expan-
sion of the velocity field which is divergence free and satisfies the boundary conditions for
viscous flow. They demonstrated, in a weighted residual context, spectral convergence on
a linear stability problem using a special set of Jacobi polynomials. Priymak [5] succeeded
in constructing a new algorithm without fractional steps where pressure values in the col-
location points are eliminated from the discrete equations. The polynomial approximation
in ther direction is either based on odd–even Chebyshev series with standard collocation
nodes, or on Jacobi polynomialsP2,1(r ) with r ∈ [−1, 1]. In the latter case the spacing of
the collocation points yields a reduced (compared to the former) resolution near the physi-
cal boundaries. This could represent a significant limitation for the simulation of turbulent
flows where a correct prediction of the wall friction velocity is of paramount importance.
All the above techniques have no splitting errors and thus appear very attractive; however,
storage requirements in [4] and computational efficiency in view of the successive approxi-
mations method used in [5], render splitting methods more appealing for DNS of turbulent
flows. The first application of a spectral technique employing a first order fractional step
to investigate the behavior of finite amplitude disturbances in pressure driven pipe flow
is due to Orszag and Patera [3]. As concerns the expansion in radial direction they used
even or odd Chebyshev series which are compatible with the behavior of the variables at
the origin. It is our belief that all of the above methods beingglobal they cannot compete
with their equivalent multi-domain counterpart. In fact domain decomposition principles
not only alleviate the limitations of global methods allowing for more complicated flow
simulations, but in addition they enable some sort of local refinements and thus increase the
computational efficiency while maintaining the global (at domain level) rate of convergence.
These features are probably all embodied in the spectral element technique of Patera [6].
Zhanget al. [7] carried out a direct numerical simulation of pipe flow at low to moderate
Reynolds numbers with one dimensional spectral elements. In the element adjacent to the
axis they used Lagrange interpolants based on the zeros of Jacobi polynomialsP0,1(r )with
associated weights which are zero atr = 0 and Legendre Lagrange interpolants elsewhere.
The removal of the geometrical singularity is carried out applying Hopital’s rule; by doing
so they preserved the spectral convergence rate. We acknowledge that spectral elements,
especially in their non-conforming version [8], represent the cornerstone for the simulation
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of incompressible flows in complex geometries. Yet, they suffer from significant difficulties
for large scale computing associated to the huge algebraic system resulting from the dis-
cretization. The development of well preconditioned iterative solvers constitutes, therefore,
an essential feature of the method.

In this work we present an efficient and accurate multi-domain pseudo-spectral technique
which, for turbulent flows with two homogeneous directions, is fully competitive, if not su-
perior, to the spectral element method of [7]. We propose a simple and effective procedure
to overcome the axis singularity based on the use of standard Chebyshev polynomials to-
gether with a special set of collocation points. The multi-domain technique, with patching
interfaces, yields significant improvements in the conditioning of the algebraic problem
arising from the discretization procedure. The elliptic kernel exploits the efficiency of an
analytic expansion of the harmonic extension in terms of Bessel functions. The method
is demonstrated to possess exponential rate of convergence on a domain basis not only
for elliptic model problems, but also for the full Navier–Stokes equations. Validation is
conducted computing the formation of Taylor vortices in a rotating Couette flow for both
axisymmetric and non-axisymmetric configurations. Direct numerical simulation of turbu-
lent pipe flow at moderate Reynolds number demonstrates the effectiveness of the method in
coping with the axis singularity. This paper is organized as follows: in Section 2 we present
the mathematical formulation and the temporal discretization of the Navier–Stokes equa-
tions. Section 3 covers the spatial discretization with particular emphasis on the domain
decomposition and the treatment of the axis singularity. The same section demonstrates
the exponential convergence rate of the elliptic kernel. Finally in Section 4 we check the
accuracy of the Navier–Stokes algorithm for three different classes of test problems.

2. MATHEMATICAL FORMULATION

In this work we are concerned with the incompressible Navier–Stokes equations in their
primitive variable form, although the mathematical and numerical formulation of the method
applies to a more general set of partial differential equations. Letx= (z, r, θ)t andt be the
space and time coordinates. The governing equations then read

∂u
∂t
= −∇ p−Nu+ 1

Re
Lu, ∀(x, t) ∈ Ä× (0, T), (1)

and

∇ ◦ u = 0, ∀(x, t) ∈ Ä× (0, T), (2)

whereu= (u, v, w)t are the non-dimensional streamwise, radial, and azimuthal velocity
components,p is the non-dimensional pressure, andÄ the physical domain with a smooth
boundary∂Ä. The Reynolds numberRe= ul/ν is based on the kinematic viscosityν and
an appropriate velocity and length scales (u andl ).

Equations (1) and (2) are subject to a suitable set of boundary conditions,

u(x, t) = w, ∀(x, t) ∈ ∂Ä× (0, T), (3)

and of initial conditions,

u(x, 0) = w0, ∀x ∈ Ä, (4)

where∇ ◦ w0= 0 inÄ.
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The differential operators of (1) and (2) in cylindrical coordinates are given by

∇u =
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In particular the non-linear convective term is computed in rotational form:

Nu = (∇ × u)× u+ ∇|u|
2

2
. (6)

Following the standard pressure correction approach we integrate the governing equations
decoupling the velocity and the pressure at each time step [9]. To overcome the time step limi-
tations of the diffusive operator we implicitly discretize the viscous terms (Crank–Nicolson);
the convective operator is instead treated explicitly for simplicity (Adams–Bashforth). Let
un be the approximation tou(·, n1t) at time leveln1t , andv the intermediate velocity vec-
tor field of the time splitting method whose curl∇ × v approximates∇ ×u up toO(1t)2.
With these assumptions the semi-discrete form of (1), (2) reads

v− un

1t
− 1

2Re
1(v+ un) = −∇ pn − 3

2
Nun + 1

2
Nun−1, (7)

un+1− v
1t

= −1

2
∇(pn+1− pn), (8)

∇ ◦ un+1 = 0. (9)

The above formulation introduces a vortex sheet of strengthO(1t)2 at the boundaries
which vanishes in the steady state.

Equations (7) constitute a set of coupled Helmholtz equations for the predicted velocity
components; a scalar Poisson equation for the pressure follows from (8)–(9). Referring to
the former set, for the sake of clarity, let us rewrite (7), as

αv− Lv = f, (10)

whereα= 2Re/1t and f includes all known terms involved in (7). Unlike the Cartesian
case, where the implicit treatment of the diffusion (together with the explicit treatment of the
convection) still allows us to uncouple the momentum equations, in cylindrical coordinates
the radial and azimuthal momentum equations are strongly coupled, as it can be easily
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verified by inspection of (5). In the present work we assume the flow to be homogeneous in
the azimuthal directionθ and thus we enjoy the computational efficiency of the fast Fourier
transform by expanding in Fourier series all variables. The velocity field and the pressure
are then represented in the transformed space byMθ complex coefficientsvm and pm as

v(z, r, θ, t) =
Mθ /2−1∑

m=−Mθ /2

vm(z, r, t) eimθ ∀θ ∈ [0, 2π ], (11)

p(z, r, θ, t) =
Mθ /2−1∑

m=−Mθ /2

pm(z, r, t) eimθ ∀θ ∈ [0, 2π ]. (12)

Introducing (11) in (10) and following the Galerkin projection method yields

αvm − L̂vm = fm, (13)

with

L̂vm =
(
1rzum − m2

r 2
um,1rzvm − m2+ 1

r 2
vm − 2

r 2
imwm,

1rzwm − m2+ 1

r 2
wm + 2

r 2
imvm

)t

, (14)

1rz· = ∂2·
∂z2
+ 1
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∂
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(
r
∂·
∂r

)
.

An analogous procedure is applied to the pressure Poisson equation.
This representation not only allows us to efficiently simulate a large class of turbulent

flows, which are two dimensional in a statistical sense, but, as it will be shown below, it
further provides the possibility of decoupling the diffusive terms. Let us begin observing
that the coupling terms 2imwm/r 2 and 2imvm/r 2 of ther andθ complex components differ
in sign, and thus a diagonalization of (14) can be obtained through a linear combination
according to the following change of variables [3]:

ṽm = (ũ, ṽ, w̃)t ≡ (um, vm + iwm, vm − iwm)
t . (15)

Equation (13) then reduces to

αṽm − L̃ṽm = f̃m, (16)

where the scalar components off̃m obey analogous transformation as (15), and

L̃ṽm =
(
1rzũ− m2

r 2
ũ,1rzṽ − (m+ 1)2

r 2
ṽ, 1rzw̃ − (m− 1)2

r 2
w̃

)t

. (17)

Irrespective of the functional representation of the unknowns in thez, r directions, and
disregarding the removable axis singularity, the above decomposition reduces, in a quite
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general form, the original set of p.d.e. (7) to a cascade of two dimensional uncoupled
elliptic problems, which do not differ from their Cartesian counterpart except for the explicit
r -dependence of the differential operators. The class of problem investigated herein allows
us to further exploit the Fourier transform procedure even in thez direction. Without loss
of generality we can therefore represent themth Fourier coefficient of the generic variable
φ as

φm(z, r, t) =
Mz/2−1∑

k=−Mz/2

φmk(r, t) eiβkz, (18)

where the wave numberβ = 2π/Lz is typically selected on physical ground,Lz being the
length of the computational domain in thez direction. By doing so, we further simplify
the p.d.e. (16) to a one dimensional problem. More precisely, again applying the Galerkin
projection technique we are left withMz×Mθ uncoupled problems of the type

L ṽmk ≡
(
ε2+ (m+ γ )

2

r 2

)
ṽmk−1r ṽmk = f̃mk, (19)

where

1r · ≡ 1

r

∂

∂r

(
r
∂·
∂r

)
, (20)

with ε2=α+ (kβ)2 andγ = 0, 1,−1 for the z, r , andθ components of the Helmholtz
equations. The Poisson equation for the pressure follows from (19) settingα= γ = 0, with
obvious meaning of the source term̃fmk.

3. NUMERICAL METHOD

As discussed in the Introduction domain decomposition methods partially alleviate the
limitation of the global spectral method while at the same time enabling a local refinement
which increases the computational efficiency. Let us consider a decomposition of the original
domainÄ= (ri , ro) into an open set ofMd disjoint subdomainsÄi (Ǟ=∪Md

i=1Ǟi ) inside
each of which the solution satisfies the differential equation (19), that, for sake of clarity,
we rewrite as

Lu = f in Ä, (21)

u = gD on ∂ÄD, ∇u · n = gN on ∂ÄN, (22)

with ∂Ä≡ ∂ÄD ∪ ∂ÄN and ∂ÄD ∩ ∂ÄN ≡ 0; n the outwarding normal on∂Ä; L the
elliptic operator (19); andf , gD, andgN the given data which are assumed to be smooth
enough. Following [10], let us denote withλ the interface unknowns, defined on0=
(Ǟ/ ∪Md

i=1Äi )/∂ÄD. Using a linearity argument we decompose the solutionui within each
subdomain as

ui ≡ wi + vi , (23)
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where the functionwi satisfies the inhomogeneous Dirichlet elliptic problem (hereafter
denoted as Problem PI), 

Lwi = fi in Äi ,

wi = gD on ∂Äi ∩ ∂ÄD,

wi = 0 on∂Äi ∩ 0,
(24)

and the “harmonic” extension ofλ, vi , satisfies the problem (hereafter denoted as Problem
PH) 

Lvi = 0 inÄi ,

vi = 0 on∂Äi ∩ ∂ÄD,

∇vi · n = gN −∇wi · n on ∂Äi ∩ ∂ÄN,

vi − v j = 0 on∂Äi ∩ ∂Ä j i 6= j,

∇vi · ni +∇v j · n j = −(∇wi · ni +∇w j · n j ) on ∂Äi ∩ ∂Ä j i 6= j .

(25)

It is observed that the weak formulation of (25) leads to an entirely equivalent formulation
in terms of the Steklov–Poincar`e operator.

Having decoupled on a subdomain basis the original elliptic differential equation in two
subproblems of reduced size, it is possible to exploit in a straightforward manner the parallel
architecture of MIMD type machines. This is only true for Problem PI whereas Problem
PH is necessarily sequential in nature. However, the cost associated to Problem PH will be
shown to be marginal, thanks to the analytic solution procedure described below. The kind
of finite dimensional approximation method which is used to solve the above problems is
irrelevant to the present formulation.

Referring to Problem PI let us start with some notations. LetPN be the space of algebraic
polynomials of degree≤N with respect to ther variable. Moreover, letξk= cos(πk/N),
with k= 0, . . . , N, theN+ 1 nodes of the Gauss–Lobatto–Chebyshev quadrature formula
in the interval [1,−1] [11]. It is straightforward to define a setrk which is the image
of the N+ 1 Lobatto pointsξk by an affine transformation mapping [1,−1] ontoǞi , with
Ǟi 6= Ǟp⊃{0}. The caseÄp will be addressed later on. The discrete approximation of (24)–
(25) is achieved following the so-calledpatching collocationmethod first introduced by
Orszag [12]. Convergence estimates for both Chebyshev and Legendre polynomials, proving
spectral rate of decay on each subdomain, can be found in [13]. In our framework and with
reference to Problem PI, the above method consists in looking, within each subdomain, for
a discrete functionwN ∈ PN satisfying

LwN = f N in Äi ,

wN = gN
D on ∂Äi ∩ ∂ÄD,

wN = 0 on∂Äi ∩ 0.
(26)

The matrices arising from the algebraic systems (26) are full, albeit of small size, as discussed
later; thus pivoted Gaussian elimination appears to be an attractive choice in view of the
ill conditioned character of the matrices. For time dependent problems and in a parallel
architecture environment, where core memory is not an issue, it is conceivable and most
likely optimal to compute and store once in a preprocessing phase the LU factors, or
alternatively to apply a diagonalization procedure. Incidentally we remark that the effect of
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the variable coefficient in the operatorL renders the application of thetau technique, which
cost-wise is very attractive, not straightforward [3].

Turning to the homogeneous Problem PH and with reference to the operatorL, we note
that the harmonic extensionw satisfies

r 2 d2w

dr2
+ r

dw

dr
− (ε2r 2+m2)w = 0, (27)

which, with the change of variablesx= r ε, reduces to the modified Bessel differential
equation,

x2w′′ + xw′ − (x2+m2)w = 0, (28)

where the standard differentiation notation has been employed. Note that the term(m+ γ )2
in (19), with γ = 0, 1,−1, is a non-negative integer, and thus, for sake of clarity, we can
setγ = 0. We recall that (28), because of thex2 factor multiplying the second derivative,
has a regular singularity atx= 0. The solution of this o.d.e., for integer values ofm, can be
found in terms of the modified Bessel functionsIm(x) andKm(x) of first and second kind,
respectively,

w(x) = c1Im(x)+ c2Km(x), (29)

with

Im(x) =
∞∑

s=0

αsx
2s+m, Km(x) = log(x)Im(x)+

∞∑
s=0

βsx
2s−m. (30)

Obviously Km(x) is infinity at x= 0, and thus to obtain a bounded solution we shall set
c2= 0 in (29). Theαs andβs values in (30) are readily obtained (with some lengthy, though
straightforward, algebra) through the method of undetermined coefficients:

αs = (s!(s+m)!2m+2s)−1, s= 0, . . . (31)

βs =


1/22s−m+1(−1)m−s−1(m− s− 1)!/s!, s= 0, . . . ,m− 1

0, s= m

−1/22s−m+11/(s−m)!1/s!
∑s−m

k=1 (1/k+ 1/(k+m)), s= m+ 1, . . . .
(32)

The coefficients (31) and (32) can be fast computed with the recursive formulae

α0 = (2mm!)−1

(33)
αs = αs−1/[4s(s+m)], s= 1, 2, . . .

βm−1 = 2α0m

βm−k = 4(m− k+ 1)(1− k)βm−k+1, k = 2, . . . ,m

βm = 0 (34)

βm+k = [βm+k−1− 2αk(2k+m)]/(4mk+ 4k2), k = 1, . . . .

In the case of the pressure Poisson equation, (27) can be directly integrated, inr variables,
without resorting to generalized power series technique, for the constant modem= k= 0,
to give

w(r ) = c1+ c2 log(r ), (35)

which degenerates tow(r )= c1 when{0}⊂ Ǟ. For each subdomain the constantsc1 and
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c2 are determined fulfilling the last four conditions in (25); more precisely the derivatives
of wi andw j appearing in the right-hand sides are evaluated by the Chebyshev collocation
differential operator, while the terms involvingvi andv j are computed through (29) and
(30). The 4(Md − 1)2 matrix of the resulting system in the case∂Ä ≡ ∂ÄD is banded with
an upper bandwidth 3.

Returning now to the issue of the removable axis singularity we recall that requiring the
physical variables to be single valued atr = 0 leads to the appropriatepole condition, which
for both scalar and vector quantities is expressed imposing that the azimuthal derivatives
must vanish at the origin [14]. Irrespective of the approximation used in the radial direction
the pole condition must be accounted for when{0}⊂ Ǟ (see among many other [15, 16]).
Ignoring it may give birth to significant degradations of the convergence properties of the
spectral representation, and possibly, to instabilities [17].

There are several proposals for the application of Chebyshev expansion in the collocation
framework available in literature. A direct mapping of the quadrature points inÄ has the
advantage of clustering many points near the origin which may be useful for certain physical
problems althoughr = 0 is not a physical boundary. Also, one can expand the unknown
variables in even or odd series which allows to keep a regular spacing of the collocation
points atr = 0. In the latter case the parity of the expansion must be compatible with the
behavior of the solution at the origin [3, 5]. Inspecting (30) it is observed that the leading
behavior ofṽ, asr→ 0, is

ṽm ∼ (r |m|, r |m+1|, r |m−1|)t . (36)

Thus it is possible to incorporate the decay of the solution multiplying each of the poly-
nomials by the appropriate power ofr [3], which improves the accuracy. Although, with
such a refinement, the expansions in even or odd Chebyshev series automatically satisfy
the pole condition, they are not well suited for pure collocation methods since, form> 1
(i.e., non-axisymmetric problems), they require different collocation points for even and
odd m modes [1]. The approach followed herein is based instead on standard orthogo-
nal polynomial expansion(pN ∈ PN) in [1,−1[ combined with Gauss–Radau quadrature
points. These nodes arise from the requirement of imposing boundary conditions at one
end point (e.g.,x= 1), solely. This is achieved by determining the roots of the polynomial
q(x)= pN+ 1(x)+apN(x), wherea=−pN+ 1(1)/pN(1) is chosen such thatq(1)= 0.
In the case of Chebyshev series explicit formulae for the quadrature points are available:
ηk= cos(2πk/(2N+ 1))with k= 0, . . . , N. Obviously in a multi-domain context an affine
transformation mapping [1,−1[ ontoǞp/{0} is required. Using this set of collocation points
there is no need to impose any boundary condition at the origin, and additionally it pro-
vides enhanced resolution close tor = 0. In what follows we will show that the exponential
properties of this spectral approximation are retained for elliptic problems even in presence
of a nonlinear source term. Let us consider the numerical solution of the problem

r 2 d2u

dr2
+ r

du

dr
− (ε2r 2+m2)u = f, r ∈Ä = [ri , ro], (37)

with m= ε= 1 and

f (r ) = er

{[
r −
(

2πr

ro − ri

)2

−1

]
cos

2π(r − ri )

ro − ri
−
(

2πr

ro − ri

)
(2r + 1) sin

2π(r − ri )

ro − ri

}
,

(38)
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TABLE I

L∞ Norm of the Error for Eq. (37) with Md = 3

N N×Md Case 1 Case 2

4 12 1.62× 10−2 6.42× 10−2

6 18 3.80× 10−4 1.40× 10−3

8 24 3.25× 10−6 1.16× 10−5

10 30 1.42× 10−8 4.93× 10−8

12 36 3.85× 10−11 1.23× 10−10

14 42 2.27× 10−14 7.45× 10−14

for which the analytic solutionu(r )= er cos(2π(r − ri )/(ro− ri )) exists. Since all data and
u are analytic we expect exponential convergence to the exact solution, for a fixed number
of subdomains, as the number of collocation points is increased. Let us start comparing the
behavior of the error in the presence (Case 1,Ä= [0, 3]) and absence (Case 2,Ä= [1, 4])
of axis singularity. The boundary conditions are Neumann atr = ro and Dirichlet atr = ri

for Case 2, while only one boundary condition (Neumann atr = ro) is prescribed for Case 1.
We consider three equally sized subdomains with the same number of points in each. Table I
shows, for both cases, that when the resolution is doubled the relative error in theL∞ norm
is more than squared (exponential decay). Table II indicates, instead, that the error decay is
algebraic with the number of subdomains. Thus no special effort is required to approximate
the radial derivatives in the presence of the singularity when standard orthogonal polynomi-
als are combined with the Gauss–Radau collocation points. Furthermore, the peculiarities
of classical pseudo-spectral methods in Cartesian coordinates are retained both in terms
of storage and accuracy, despite the additional difficulties associated with the cylindrical
differential operators. Finally, the analytic expansion of the harmonic extension renders the
proposed technique very appealing even in terms of computational efficiency. Although the
above results are based on a simple model problem they nevertheless are representative of
more complex situations recalling that for the Navier–Stokes equations the implicit treat-
ment of the diffusive terms is the prevailing part. The main conclusions which can be drawn,
at least in qualitative manner, are that when the required accuracy is increased, it may be
more convenient to augment the number of collocation nodes rather than the number of
subdomains. The opposite is true for those class of problems where accuracy is not a major
issue. However, one must keep in mind that the computational cost of the elliptic kernel in
three dimensions scales, roughly speaking, withMz×Mθ×Md×Nh, whereh reduces from
3 to 2 if the LU factors are stored in a preprocessing stage. Thus from a computational cost

TABLE II

L∞ Norm of the Error for Eq. (37) with N = 10

Md N×Md Case 1 Case 2

1 10 4.22× 10−5 1.67× 10−4

3 30 1.42× 10−8 4.93× 10−8

5 50 2.21× 10−10 7.61× 10−10

7 70 1.44× 10−11 5.00× 10−11

9 90 1.70× 10−12 6.61× 10−12



NAVIER–STOKES EQUATIONS IN CYLINDRICAL GEOMETRIES 573

point of view it is tempting to keepN to moderate values and to riseMd. These conflicting
issues have to be compromised somehow and no general rules to simulate complicated
flow structures can be stated. Our experience indicates that DNS of turbulent pipe flow at
moderate Reynolds number can be accurately carried out withN≈ 12 andMd≈ 6. These
features are shared by the one dimensional spectral element discretization of Zhanget al.
[7], which, for the class of problem investigated herein, appears less efficient in as much
as the treatment of the elliptic operators is concerned. Comparing the cost of the present
method with the single domain approach of Priymak [5], who also solved turbulent pipe
flows, we claim a better efficiency with equal spatial resolution.

4. RESULTS

Hereafter we present numerical results for 3 test problems which clearly demonstrate the
potential of the Navier–Stokes solver. Whenever possible we have used analytical solutions
or reference numerical and experimental data for the sake of comparison.

4.1. Swirling Flow in Annular Pipe

This test case has been selected in order to verify the ability of the present method to
simulate, in the Navier–Stokes framework, steady flows which admit analytical solution,
with both axial and azimuthal velocity distributions. To this aim let us consider the fully
developed flow in the annular region between two coaxial circular cylinders whose inner
and outer radii areri andro, respectively. The relevant non-dimensional parameter is de-
fined asRe= ub 2ro(1− η)/ν, whereub represents the bulk (area averaged) axial velocity
andη= ri /ro. The analytic solution for laminar flow conditions, which occur as long as
Re< 2000, is easily found through momentum balance,

ua(r ) = 2ub
(1− (r/ro)

2) logη − (1− η2) log(r/ro)

(1+ η2) logη + (1− η2)
, va = wa = 0. (39)

In addition if the inner cylinder rotates at constant angular velocityω about thez axis, and
the associated Taylor number (T a=ω ri ro(1− η)/ν) does not exceed a critical value [18],
the whole motion consists of a superposition of (39) with

ua= va= 0, wa(r ) = ωri
η

1− η2

[
ro

r
− r

ro

]
. (40)

Expressingub in terms ofReand of the pressure gradient, it is easy to verify that solu-
tion (39) reduces to the classical Hagen–Poiseuille formula asη→ 0. In Fig. 1 we give
the computed streamwise and azimuthal normalized velocity components as a function of
the non-dimensional radiusξ = (r − ri )/s, with s= ro − ri , together with the analytical
distributions, forη= 0.5 ands= 1.

We have carried out computations of this flow for several(N,Md) pairs and reported
in Tables III and IV theL∞ norm of the error. The exponential error decay, for a fixed
number of subdomainsMd= 2, and the algebraic character, for a fixed number of Chebyshev
polynomialsN= 4, is then confirmed even for the whole Navier–Stokes algorithm.
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FIG. 1. Velocity components of swirling flow as a function of the non-dimensional radius.

4.2. Taylor Vortex Flow

We proceed in the validation of the method presenting in this section numerical solutions
of the Taylor–Couette flow for both axisymmetric and non-axisymmetric conditions. This
class of problems is known to represent a tough test-bench for all algorithms solving the
Navier–Stokes equations as an initial value problem; as indicated in [19] these rotating
flows are sensitive to the splitting errors because of the forcing term present at the radial
boundaries. In [19] a special set of Green functions allowing to satisfy exactly the inviscid
boundary conditions was found necessary to remove the time splitting errors. We shall
attempt to give a numerical evidence of the quality of the present results comparing various
integral and local quantities with the reference data of [20].

It is well known that several stable solutions of the Navier–Stokes equations governing
the Taylor–Couette flow exist, depending essentially on the values of three independent
dimensionless parameters: the radius ratioη, the axial wavelengthλz, and the Reynolds
numberRe=ωri s/ν. In what follows we have useds as the unit length. For each pair
(η, λz) there exists a critical valueRec(η) such that forRe<Rec, (40) represents a stable
solution of (1)–(2). ForRe>Rec, which in the narrow gap limit(η→ 1) can be estimated

TABLE III

L∞ Norm of the Error for Swirling Flow with Md = 2

N N×Md ‖u− ua‖

4 8 4.36× 10−3

6 12 6.21× 10−5

8 16 8.06× 10−7

10 20 1.00× 10−8

12 24 1.21× 10−10

14 28 1.76× 10−12
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TABLE IV

L∞ Norm of the Error for Swirling Flow with N = 4

Md N × Md ‖u− ua‖

2 8 4.36× 10−3

4 16 1.32× 10−3

6 24 6.11× 10−4

8 32 3.50× 10−4

10 40 2.26× 10−4

12 48 1.58× 10−4

by eigenvalue analysis asRec= 41.41(1 − η)−0.5, the circular Couette flow is unstable
to three dimensional axisymmetric Taylor vortices. The latter appear as counter-rotating
toroidal vortices aligned along thez axis. At still higher Reynolds number Taylor vortex
flow is itself unstable to non-axisymmetric disturbances with several possible azimuthal
wavelengths. These flows are three dimensional and unsteady in general, although for the
one travelling wave case a proper choice of a rotating frame renders the flow steady [19]. We
have computed both steady axisymmetric Taylor vortex flow and non-axisymmetric wavy
vortex flow with one travelling wave. The initial conditions for the Taylor vortex flow were
obtained perturbing the circular Couette flow with infinitesimal axisymmetric disturbances.
Similarly the one travelling wave solution was obtained perturbing the Taylor vortex flow
with non-axisymmetric disturbances. All calculations were carried out with 4 subdomains
each of which consisted of 12 Chebyshev polynomials and 32 axial Fourier modes. In
the non-axisymmetric case 32 azimuthal Fourier modes were employed. The subdomains
adjacent to the inner and outer walls were characterized by a radial extension equal tos/8
to enhance the resolution of the near wall gradients. The time step was set to 0.01.

We begin the analysis reporting several integral parameters of physical quantities, per
unit axial length, that characterize the different flow regimes, namely kinetic energy, angular
momentum, enstrophy, and torque. They obey the usual definitions:

E =
∫ 2π

0

∫ Lz

0

∫ ro

ri

|u|2r dr dz dθ, (41)

L =
∫ 2π

0

∫ Lz

0

∫ ro

ri

wr 2 dr dz dθ, (42)

E =
∫ 2π

0

∫ Lz

0

∫ ro

ri

|∇ × u|2r dr dz dθ, (43)

Go =
∫ 2π

0

∫ Lz

0
r 2

o

∂w

∂r

∣∣∣∣
r=ro

dz dθ. (44)

In Table V we compare the computed values for axisymmetric Taylor vortex flow(η=
0.875,Re= 140, λz= 2.5) and non-axisymmetric one travelling wave flow characterized
by a fundamental azimuthal wave number equal to 6(η= 0.868,Re= 230, λz= 2.14)with
the reference data of [20]. Despite the subtleties of the Taylor–Couette flow conditions, the
quality of the results indicates that the proposed method represents a valid alternative to the
use of Green function technique suggested in [19].
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TABLE V

Summary of Physical Properties for Taylor Vortex

Flow and One Travelling Wave Flow

Taylor vortex One travelling wave

Present Data from [20] Present Data from [20]

E 7.14 7.14 6.13 6.13
L 163 163 142 142
Go 3.35 3.35 2.71 2.71
E 27.0 27.1 41.0 41.2

In Fig. 2 we give the axially and azimuthally averaged non-dimensional angular momen-
tum rw/(ωr 2

i ) as a function ofξ for both the axisymmetric (unstable) Taylor Vortex flow
and the non-axisymmetric one travelling wave flow characterized by an azimuthal wave
number equal to 6(η= 0.875, Re= 244, λ= 3.0). The computed results are again com-
pared with the data of [20]. Note that the angular momentum of the stable one travelling
wave flow exhibits a smaller gradient at the boundaries compared with the unstable Taylor
vortex flow. Also the flattening ofrw in the core region is related to the larger momentum
transfer. Keeping in mind that the error decay is exponential withN and algebraic withMd

(see Subsection 4.1), we remark that the excellent agreement of our calculations with the
spectral single domain of [19] is to be attributed to the flexibility of the present method. In
fact the rates at which angular momentum and energy leave or enter the cylinder are pro-
portional to the viscosity and to the gradient velocity at the boundaries; thus any numerical
calculation must correctly resolve the near wall regions, which in the framework of spectral
multi-domain methods can be accomplished through a proper choice of the subdomain’s
height and the number of points independently.

FIG. 2. Angular momentum as a function of the non-dimensional radius: Taylor vortex (T.V.) and one travelling
wave (T.W.).
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FIG. 3. Energy and enstrophy spectra as a function of the axial wave numberkz for Taylor vortex flow.

In Fig. 3 the one dimensional energy and enstrophy spectra are depicted as a function
of the axial wave numberkz for the Taylor vortex flow(η= 0.875, Re= 140, λz= 2.5).
We note that bothE(kz) andE(kz) obey a rate of fall off ase−kz and are very smooth as
demonstrated by [20]. Also, the absence of any upward curl in the spectra at large wave
numbers indicates the adequacy of the spatial resolution.

In Fig. 4 we show the azimuthal velocity component isolines together with the velocity
vectors, for both the Taylor Vortex and the one travelling wave flows. The previously
mentioned flattening ofrw in the gap core is clearly related to a more intense vortical
activity. Note that the boundary layers in the cross plane are substantially fuller for the one
travelling wave flow.

4.3. Direct Numerical Simulation of Pipe Flow

We have computed a fully developed turbulent pipe flow at a Reynolds number of 2500
based on bulk velocityub and pipe diameterD= 2R, to assess the ability of the method in
dealing with complicated flow structures as well as to demonstrate the effectiveness of the
pipe axis treatment. The length of the pipe(Lz= 8R) is chosen long enough to include the
largest scale structures in the flow. The computation was carried out with 442,368 grid points
(6 subdomains each of which consisted of 12×64×96 points in radial, circumferential, and
streamwise directions, respectively). With this configuration the minimalr value at the pipe
axis was 3.94× 10−4. The radial extent of the near wall subdomain was adjusted in such a
way that the first mesh point away from the wall is located atr+ = (R−r )uτ /ν= 0.1 where
uτ = (τw/ρ)0.5 is the wall shear velocity. Our streamwise grid-spacing1z+ is 7.7 wall units,
while the circumferential oner1θ+ varies linearly withr , from a maximum value of 9.1 at
the pipe wall, to 0.01 at the pipe axis. This resolution is comparable both to the one used by
Eggelset al.[21] in their pipe flow simulation (1.9, 8.8, 7 in r, θ, z directions), and by Kim
et al. [22] in their plane channel (2.8, 7, 12 normal to the wall, span-wise, and streamwise
directions, respectively). Computing the mean grid size1+ = (1r+ r1θ+1z+)1/3 we have
checked that the resolution is sufficient to resolve all relevant turbulent scales, almost down
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FIG. 4. Azimuthal velocity contours (contour level1= 0.05) and velocity vectors: Taylor vortex flow (a) and
travelling wave flow (b).

to the Kolmogorov scaleη+, for which estimates were given in [23]. The time step was set
to1t = 5× 10−3.

The initial velocity field has been created superposing to a logarithmic distribution random
noise with a prescribed standard deviation. The steady state is identified by a constant time
averaged wall shear stress, and by a quasi periodic turbulent kinetic energy. The sample size
used to collect statistics is roughly 14 non-dimensional time unitst+ = tuτ /D. In Fig. 5 we
present the energy spectra of all velocity components, normalized with the friction velocity,
at two different radial locations, namelyr+ ≈ 10 andr+ ≈ 90. The spectra are presented as
a function of the streamwise wave numberkz= 2πk/Lz. The drop in the energy of several
orders of magnitude and the absence of pile up at the highest wave number clearly reveal



NAVIER–STOKES EQUATIONS IN CYLINDRICAL GEOMETRIES 579

FIG. 5. One dimensional energy spectra.

that the simulation is “resolved” in the sense described above. In particular the distinction
between the range of dissipative scales and the energy containing motions is rather neat at
r+ ≈ 90, as confirmed by the resemblance of the computed spectra with thek−4 andk−5/3

slopes. The reduced extent of the inertial sub-range agrees with theoretical arguments stating
that a sufficiently wide separation between the largest and smallest eddies is only present
when the turbulent Reynolds number, based on Taylor micro-scaleReλ, is larger than 2000.
Starting from the streamwise correlation coefficientRuu we have estimatedReλ to be of
order 100. The computed skin friction coefficientC f = τw/(0.5ρUb

2)= 11.13×10−3 is in
very good agreement with the Blasius lawC f = 0.079Re−0.25= 11.19× 10−3.

In Fig. 6 we present the mean velocity profile normalized by the centerline velocity
together with the experimental data of Patel and Head [24] and those of Zhanget al.[7]. The

FIG. 6. Streamwise mean velocity profiles in outer coordinates.
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FIG. 7. Streamwise mean velocity profiles in inner coordinates.

DNS data, which agree well among themselves, suggest fuller velocity profiles compared
to the experiments. In Fig. 7 the mean velocity profile is given in inner variables, together
with the law of the wall and the logarithmic one. It is observed that the viscous sublayer
is completely resolved by the simulation, while important deviations from the universal
profile distribution are present forr+> 10. This trend agrees with the observations of Patel
and Head [24] who demonstrated that low Reynolds number pipe flows (Re≤ 104) fail to
conform to the law of the wall. In Fig. 8 we present the turbulent intensities of all velocity
components normalized with the theoretical value of the shear velocity. The agreement

FIG. 8. Normal stress components.
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FIG. 9. Shear stresses.

between the computations is generally good; also, the limiting values in the near wall region
are consistent with the theoretical ones, obtained from physical considerations on the no-
slip boundary condition and the continuity equation. No experimental data are available
at this Reynolds number. The Reynolds shear stresses and the viscous one are shown in
Fig. 9, together with the data of [7], which have been normalized with the theoretical value
of the shear velocity. The total shear stress distribution is linear for fully developed pipe
flows, since it must balance the imposed volumetric flow rate. The Reynolds stress attains
its maximum value atr/R≈ 0.68, r+ ≈ 30, before decaying rapidly to zero at the wall
where the viscous shear stresses are predominant.

In Fig. 10 we give the instantaneous distributions of the three Cartesian components of
the vorticity along a line crossing the pipe center in ther − z plane. Note that although the

FIG. 10. Vorticity profiles.
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FIG. 11. Instantaneous velocity vectors (a), streamwise velocityu (b), streamwise vorticityωz (c), and shear
stressuv (d).

continuity of the gradient of the velocity field is not explicitly enforced at the interfaces,
the vorticity components are smooth and perfectly resolved in the whole domain. With
reference to the pipe axis the same figure shows a close up view in the core region which
clearly demonstrates the effectiveness of the treatment of the singularity. In Fig. 11 we
present the velocity vectors, the streamwise velocity, the streamwise vorticity, and the shear
stressuv taken from an instantaneous field. Let us focus the attention on the large scale
coherent structures of Fig. 11a. The two pairs of co-rotating vortices associated with the
two mushroom-type structures are clearly visible in Fig. 11b. The streamwise vorticity of
Fig. 11c also shows a peak at similar locations. Finally Fig. 11d indicates that the Reynolds
stress generation (light area) is predominant in the near wall region. In particular the top
right maximum seems to be associated with a fourth quadrant event (sweep), that is, positive
streamwise fluctuations are connected with high speed fluid lumps arriving at the wall. All
instantaneous quantities appear smooth and well resolved.
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5. CONCLUSION

In this paper we have discussed the construction of a fast pseudo-spectral Navier–Stokes
solver for cylindrical geometries which is shown to possess the accuracy required for the
direct numerical simulation of turbulent flows with two homogeneous directions. The for-
mulation overcomes the issues related to the axis singularity adopting as expansion basis in
the radial direction standard Chebyshev polynomials combined with a special set of collo-
cation nodes. The multi-domain technique based on patching interfaces provides additional
flexibility both in terms of computational efficiency and near wall resolution, the latter being
a key issue for the simulation of turbulent flows. The elliptic kernel enjoys the efficiency of
an analytic expansion of the harmonic extension. We have demonstrated that whole scheme
attains exponential accuracy on a domain basis not only for elliptic model problems, but
also for the full Navier–Stokes equations.
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